132 research outputs found

    Essays in political selection and politicians' behavior

    Get PDF
    I study some economic and institutional drivers of the quality and behaviour of elected politicians. In the first chapter, using a unique database on local politicians in Italian municipalities between 1985 and 1992, I implement a RD analysis to evaluate the causal effect of a wage increase on the characteristics of politicians in local parliamentary systems. I find that higher expected wages attract more educated member of the local council but this positive selection effect actually results in a less educated council-elected mayor. These results are confirmed by other measure of skills (educational attainment and previous occupations). In the second chapter, using the same database, I take advantage of a double discontinuity to identify the causal effect of the switch from single-party to coalition governments. I exploit an identification strategy based on the difference in discontinuities and I highlight an increase in the quality of the elected mayor in term of years of schooling and previous job. Finally, in the third chapter, using Italian MPs micro-data, I study some economic determinants of party discipline. In particular, I study the MPs’ behaviour during the XVI, XVII and XVIII legislature focusing on their rebellion rate (i.e. their propensity to vote against their party line) and absenteeism rare by using different estimation methods (OLS, Fractional Logit, Poisson). Our results show that outside income is positive correlated with absences and negative correlated with rebel votes

    Categorizing basic factors driving soil genesis, pedovariability and plant assemblages in Mediterranean Temporary Wetlands (TWs)

    Get PDF
    A research was carried out in six Temporary Wetlands (TWs), located in north-western Sardinia (Italy), with the aim to categorize the basic factors driving and linking soil genesis and plant assemblages in Mediterranean basin

    People inflows as a pandemic trigger: Evidence from a quasi-experimental study

    Get PDF
    Although it has been established that population density can contribute to the outbreak of the COVID-19 virus, there is no evidence to suggest that economic activities, which imply a significant change in mobility, played a causal role in the unfolding of the pandemic. In this paper, we exploit the particular situation of Sardinia (Italy) in 2020 to examine how changes in mobility due to tourism inflows (a proxy of economic activities) influenced the development of the COVID-19 pandemic. Using a difference-in-differences approach, we identify a strong causal relationship between tourism flows and the emergence of COVID-19 cases in Sardinia. We estimate the elasticity of COVID-19 cases in relation to the share of tourists to be 4.1%, which increases to 5.1% when excluding local residents. Our analysis suggests that, in the absence of tools preventing the spread of infection, changes in population density due to economic activities trigger the pandemic spreading in previously unaffected locations. This work contributes to the debate on the complex relationship between COVID-19 and the characteristics of locations by providing helpful evidence for risk-prevention policies

    Cortical Activations in Humans Grasp-Related Areas Depend on Hand Used and Handedness

    Get PDF
    Background: In non-human primates grasp-related sensorimotor transformations are accomplished in a circuit involving the anterior intraparietal sulcus (area AIP) and both the ventral and the dorsal sectors of the premotor cortex (vPMC and dPMC, respectively). Although a human homologue of such a circuit has been identified whether activity within this circuit varies depending on handedness has yet to be investigated. Methodology/Principal Findings: We used functional magnetic resonance imaging (fMRI) to explicitly test how handedness modulates activity within human grasping-related brain areas. Right- and left-handers subjects were requested to reach towards and grasp an object with either the right or the left hand using a precision grip while scanned. A kinematic study was conducted with similar procedures as a behavioral counterpart for the fMRI experiment. Results from a factorial design revealed significant activity within the right dPMC, the right cerebellum and AIP bilaterally. The pattern of activity within these areas mirrored the results found for the behavioral study. Conclusion/Significance: Data are discussed in terms of an handedness-independent role for the right dPMC in monitoring hand shaping, the need for bilateral AIP activity for the performance of precision grip movements which varies depending on handedness and the involvement of the cerebellum in terms of its connections with AIP. These results provide the first compelling evidence of specific grasping related neural activity depending on handedness

    fMRI Brain-Computer Interface: A Tool for Neuroscientific Research and Treatment

    Get PDF
    Brain-computer interfaces based on functional magnetic resonance imaging (fMRI-BCI) allow volitional control of anatomically specific regions of the brain. Technological advancement in higher field MRI scanners, fast data acquisition sequences, preprocessing algorithms, and robust statistical analysis are anticipated to make fMRI-BCI more widely available and applicable. This noninvasive technique could potentially complement the traditional neuroscientific experimental methods by varying the activity of the neural substrates of a region of interest as an independent variable to study its effects on behavior. If the neurobiological basis of a disorder (e.g., chronic pain, motor diseases, psychopathy, social phobia, depression) is known in terms of abnormal activity in certain regions of the brain, fMRI-BCI can be targeted to modify activity in those regions with high specificity for treatment. In this paper, we review recent results of the application of fMRI-BCI to neuroscientific research and psychophysiological treatment

    Overall treatment strategy for patients with metastatic NSCLC with activating EGFR mutations

    Get PDF
    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR-TKIs) are standard of care in the first-line (1L) setting for patients with metastatic non-small cell lung cancer (mNSCLC) with activating EGFR mutations. EGFR activating mutations are a predictive factor for response to EGFR-TKIs. Meta-analyses have shown that patients with exon 21_L858R mutations exhibit reduced sensitivity to EGFR-TKIs, resulting in inferior patient outcomes compared to those with exon 19 deletion mutations, with worse overall survival, progression-free survival, objective response, and disease control rates. Clinical activity observed with 1L therapy with first-generation (1G), second-generation (2G), and third-generation (3G) EGFR-TKIs is not permanent, and resistance inevitably develops in all cases, supporting the importance of overall treatment planning. The introduction of the 3G EGFR-TKI, osimertinib, provides an opportunity to overcome T790M-mediated resistance to 1G, and 2G EGFR-TKIs. Additionally, with the use of osimertinib, fewer T790M mutations are being detected as T790M is not a reported resistance mechanism to 3G EGFR-TKIs. However, there are currently no approved targeted therapies after 3G EGFR-TKIs. In order to further improve patient outcomes, there is a need to explore additional options for the overall treatment strategy for patients, including 1L and beyond. Combination of vascular endothelial growth factor (VEGF) inhibitors and EGFR-TKIs or chemotherapy and EGFR-TKIs may be a potential therapeutic approach in the 1L setting. This review discusses current treatment options for mNSCLC with activating EGFR mutations based on tumor, patient, and treatment characteristics and how an overall treatment plan may be developed

    Differential neural mechanisms for early and late prediction error detection

    Get PDF
    Emerging evidence indicates that prediction, instantiated at different perceptual levels, facilitate visual processing and enable prompt and appropriate reactions. Until now, the mechanisms underlying the effect of predictive coding at different stages of visual processing have still remained unclear. Here, we aimed to investigate early and late processing of spatial prediction violation by performing combined recordings of saccadic eye movements and fast event-related fMRI during a continuous visual detection task. Psychophysical reverse correlation analysis revealed that the degree of mismatch between current perceptual input and prior expectations is mainly processed at late rather than early stage, which is instead responsible for fast but general prediction error detection. Furthermore, our results suggest that conscious late detection of deviant stimuli is elicited by the assessment of prediction error’s extent more than by prediction error per se. Functional MRI and functional connectivity data analyses indicated that higher-level brain systems interactions modulate conscious detection of prediction error through top-down processes for the analysis of its representational content, and possibly regulate subsequent adaptation of predictivemodels. Overall, our experimental paradigm allowed to dissect explicit from implicit behavioral and neural responses to deviant stimuli in terms of their reliance on predictive models

    Proprioceptive Feedback and Brain Computer Interface (BCI) Based Neuroprostheses

    Get PDF
    Brain computer interface (BCI) technology has been proposed for motor neurorehabilitation, motor replacement and assistive technologies. It is an open question whether proprioceptive feedback affects the regulation of brain oscillations and therefore BCI control. We developed a BCI coupled on-line with a robotic hand exoskeleton for flexing and extending the fingers. 24 healthy participants performed five different tasks of closing and opening the hand: (1) motor imagery of the hand movement without any overt movement and without feedback, (2) motor imagery with movement as online feedback (participants see and feel their hand, with the exoskeleton moving according to their brain signals, (3) passive (the orthosis passively opens and closes the hand without imagery) and (4) active (overt) movement of the hand and rest. Performance was defined as the difference in power of the sensorimotor rhythm during motor task and rest and calculated offline for different tasks. Participants were divided in three groups depending on the feedback receiving during task 2 (the other tasks were the same for all participants). Group 1 (n = 9) received contingent positive feedback (participants' sensorimotor rhythm (SMR) desynchronization was directly linked to hand orthosis movements), group 2 (n = 8) contingent “negative” feedback (participants' sensorimotor rhythm synchronization was directly linked to hand orthosis movements) and group 3 (n = 7) sham feedback (no link between brain oscillations and orthosis movements). We observed that proprioceptive feedback (feeling and seeing hand movements) improved BCI performance significantly. Furthermore, in the contingent positive group only a significant motor learning effect was observed enhancing SMR desynchronization during motor imagery without feedback in time. Furthermore, we observed a significantly stronger SMR desynchronization in the contingent positive group compared to the other groups during active and passive movements. To summarize, we demonstrated that the use of contingent positive proprioceptive feedback BCI enhanced SMR desynchronization during motor tasks

    Assessing Noncoding Sequence Variants of GJB2 for Hearing Loss Association.

    Get PDF
    Involvement of GJB2 noncoding regions in hearing loss (HL) has not been extensively investigated. However, three noncoding mutations, c.-259C>T, c.-23G>T, and c.-23+1G>A, were reported. Also, c.-684 -675del, of uncertain pathogenicity, was found upstream of the basal promoter. We performed a detailed analysis of GJB2 noncoding regions in Portuguese HL patients (previously screened for GJB2 coding mutations and the common GJB6 deletions) and in control subjects, by sequencing the basal promoter and flanking upstream region, exon 1, and 3’UTR. All individuals were genotyped for c.-684 -675del and 14 SNPs. Novel variants (c.-731C>T, c.-26G>T, c.∗45G>A, and c.∗985A>T) were found in controls. A hearing individual homozygous for c.-684 - 675del was for the first time identified, supporting the nonpathogenicity of this deletion. Our data indicate linkage disequilibrium (LD) between SNPs rs55704559 (c.∗168A>G) and rs5030700 (c.∗931C>T) and suggest the association of c.[∗168G;∗931T] allele with HL. The c.∗168A>G change, predicted to alter mRNA folding, might be involved in HL.info:eu-repo/semantics/publishedVersio
    corecore